L-MAG 电磁流量计转换器 通讯协议

版本号: LMAGMODRTUV77

2012-10-12

目录

一、概述	2 -
二、L-mag 网络结构及接线	2 -
三、Modbus 协议 RTU 帧格式	2 -
四、Modbus 协议命令编码定义	4 -
五、L-mag 电磁流量计 MODBUS 寄存器定义	5 -
1. L-mag 电磁流量计 MODBUS 寄存器地址定义	5 -
2.PLC 地址设置说明	5 -
3.组态王地址设置说明	6 -
4. 数据含义说明	6 -
六、通讯数据解析	7 -
1 读瞬时流量	7 -
2.读瞬时流速:	8 -
3 读累积流量	8 -
5.读总量流量单位	10 -
6. 读报警状态	10 -
七、应用举例	11 -
1.C 语言 MODBUS 示例程序	11 -
2.modbus 调试软件 modbus poll 通讯实例	13 -
3.modbus 调试软件 modscan32 通讯实例	15 -
4.组态王 6.53 通讯实例	17 -
5. 力控 6.1 通讯实例	21 -
6 MCGS 通讯空例	- 24 -

注:本协议应用举例中例程只提供参考,例程中部分参数与 MODBUS 寄存器地址定义不符,请以 MODBUS 寄存器地址定义为准。

一、概述

L-mag 电磁流量计具有标准的 MODBUS 通讯接口,支持波特率 1200,2400,4800,9600,19200。通过 MODBUS 通讯网络,主站可以采集瞬时流量,瞬时流速,累积流量等参数。

L-mag 电磁流量计采用的串口参数: 1 位起始位 8 位数据位 1 位停止位,无校验。

L-mag 电磁流量计的 MODBUS 通讯接口在物理结构上采用电气隔离方式,隔离电压 1500 伏,并具有 ESD 保护,能够克服工业现场的各种干扰,保证通讯网络的可靠运行。

二、L-mag 网络结构及接线

L-mag 电磁流量计标准 MODBUS 通讯网络是总线型网络结构,支持 1 到 99 个电磁流量计组网,在网络最远的电磁流量计通常要在通讯线两端并联一个 120 欧姆的终端匹配电阻,标准通讯连接介质为屏蔽双绞线。

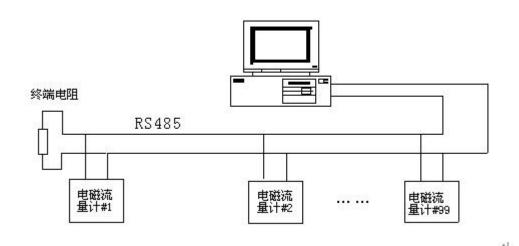


图-1 电磁流量计网络结构 L-mag 电磁流量计通讯接线详见电磁流量计使用说明书。

三、Modbus 协议 RTU 帧格式

MODBUS 协议是主从通讯方式,每次通讯由主站发起,从站响应主站命令回传数据。

L-mag 电磁流量计采用 MODBUS RTU 格式(十六进制格式),其帧结构如图-2 所示。

1. 主站命令帧结构

帧起始	设备地址	功能代码	寄存器地址	寄存器长度	CRC 校验	帧结束
T1-T2-T3-T4	8Bit	8Bit	16Bit	16Bit	16Bit	T1-T2-T3-T4

图-2 主站 RTU 消息帧

2. 从站响应帧结构

帧起始	设备地址	功能代码	数据	CRC 校验	帧结束
T1-T2-T3-T4	8Bit	8Bit	n 个 8Bit	16Bit	T1-T2-T3-T4

图 3 从站 RTU 消息帧

说明:

(1) T1-T2-T3-T4 为帧起始或帧结束, MODBUS 协议规定帧起始或帧结束 是在帧与帧间延时 3.5 char 字符的时间实现的,如图-4 所示。

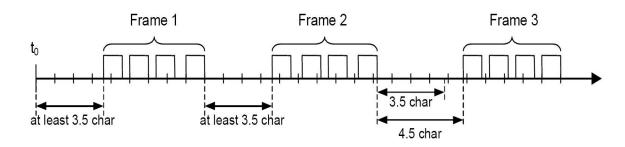


图-4 MODBUS 帧间隔

- (2)设备地址:电磁流量计的通讯地址,在一个网络中不能有两个相同的地址。
- (3) 功能码: MODBUS 协议规定的功能码, L-mag 电磁流量计采用功能码 4 读输入寄存器来实现采集数据的。

(4) 寄存器地址和寄存器数

主站命令中的参数是从寄存器地址开始的寄存,读寄存器长度的 N 个寄存器。

(5) 从站响应数据

从站响应数据是: 字节数和 N 个数字节数据。

详见 MODBUS 协议。

四、Modbus 协议命令编码定义

MODBUS 功能码定义如表-1 所示, L-mag-电磁流量计仅采用 04 功能码。

表 -1

功能码	名称	作用
01	读取线圈状态	保留
02	读取输入状态	保留
03	读取保持寄存器	保留
04	读取输入寄存器	读电磁流量计实时信息
05	强置单线圈	保留
06	预置单寄存器	保留
07	读取异常状态	保留
08	回送诊断校验	保留
09	编程(只用于 484)	保留
10	控询(只用于 484)	保留
11	读取事件计数	保留
12	读取通信事件记录	保留
13	编程(184/384 484 584)	保留
14	探询(184/384 484 584)	保留
15	强置多线圈	保留

五、L-mag 电磁流量计 MODBUS 寄存器定义

1. L-mag 电磁流量计 MODBUS 寄存器地址定义 表 -2

Protocol	Protocol		
Addresses	Addresses	 数据格式	寄存器定义
		数据俗式	一
(Decimal)	(HEX)		
4112	0x1010	Float	瞬时流量浮点表示
1112	081010	Inverse	的中间加重门流 次 河、
4114	0x1012	Float	吗叶汝 涛巡上丰二
4114	UX1U1Z	Inverse	瞬时流速浮点表示
11112		Float	流量百分比浮点表示(电
4116	0x1014	Inverse	池供电表保留)
		Float	
4118	0x1016		流体电导比浮点表示
		Inverse	
4120	0x1018	Long	正向累积数值整数部分
1120	ONTOTO	Inverse	工门水小双直正双印7
4122	01014	Float	工点思和粉体小粉如八
4122	0x101A	Inverse	正向累积数值小数部分
4104	0 1010	Long	
4124	0x101C	Inverse	反向累积数值整数部分
		Float	
4126	0x101E	Inverse	反向累积数值小数部分
		+	
4128	0x1020	Unsigned	瞬时流量单位(表3)
		short	
4129	0x1021	Unsigned	 累积总量单位(表 4/表 5)
1123	0.110.21	short	家小心里干匹(X 1/ X 0/
4100	0 1000	Unsigned	L. 17日 +17 恭か
4130	0x1022	short	上限报警
		Unsigned	
4131	4131 0x1023		下限报警
		short	
4132	0x1024	Unsigned	空管报警
		short	
4133	0x1025	Unsigned	系统报警
4100	0.1102.0	short	がおいて言
		•	

2.PLC 地址设置说明

PLC 设置时如果没有功能码设置项时,使用功能 04 应在寄存器地址前面加 3。 另 PLC 寄存器地址的基址是从 1 开始,所以 PLC 设置寄存器地址时应在原地址上加 1.

例:

L-mag 电磁流量计 MODBUS 寄存器地址为 4112 (0x1010), MODBUS 功能码为 4 时, PLC 寄存器地址为 34113。

详细设置见应用举例章节 2.

3.组态王地址设置说明

组态王设置时没有功能码设置项,不同的驱动设置方法不同。

以 PLC-莫迪康-modbus (RTU) 驱动为例,使用功能 04 应在寄存器地址前面加 8。另组态王寄存器地址的基址是从 1 开始,所以组态王设置寄存器地址时应在原地址上加 1.

L-mag 电磁流量计 MODBUS 寄存器地址为 4112 (0x1010), MODBUS 功能码为 4 时,组态王寄存器地址为 84113。

详细设置见应用举例章节4.

4. 数据含义说明

(1) 浮点格式:

L-mag 电磁流量计 MODBUS 采用 IEEE754 32 位浮点数格式,其结构如

下: (以瞬时流量为例)

0X1	010 (34113)	0x1011	(34114)
BYTE1	BYTE2	вуте3	BYTE4
S EEEEEE	S EEEEEE E MMMMMMM		ммммммм

S-尾数的符号; 1=负数, 0=正数;

E-指数; 与十进制数 127 的差值表示。

M一尾数;低23位,小数部分。

当 E 不全"0"时,且不全"1时浮点数与十进制数转换公式:

$$V = (-1)^{S} 2^{(E-127)} (1 + M)$$

(2) 瞬时流量单位

表 3

					-		
代码	瞬时单位	代码	瞬时单位	代码	瞬时单位	代码	瞬时单位
0	L/S	3	M3/S	6	T/S	9	GPS
1	L/M	4	M3/M	7	T/M	10	GPM
2	L/H	5	M3/H	8	T/H	11	GPH

(3) 累积总量单位

表 4(适用于B型及511型电磁流量计转换器)

代码		0	1	2		3	
累积单位	Ĭ.	L M3		T		USG	
	表	5(适用于	· C 型电磁流量	量计转换器)			
代码	0	1	2	3	4	5	
累积单位	L	L	L	M3	M3	M3	
代码	6	7	8	9	10	11	
累积单位	Т	Т	Т	USG	USG	USG	

(4)报警

上限报警,下限报警,空管报警,系统报警表示:

0----- 不报警; 1----报警

六、通讯数据解析

瞬时流量,瞬时流速,流量百分比,流体电导比,正反向累积量小数部分以浮点数的格式传输。正反向累积量的整数部分以长整型数传输。

1 读瞬时流量

主站发送命令(十六进制)

01	04	10	10	00	02	74	CE
设备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收到数据:

01	04	04	C4	1C	60	00	2F	72
设备	功能码	数据		4 个字节	CRC	CRC		
地址		长度		(瞬时	髙位	低位		

浮点数 C4 1C 60 00

1100 0100 0001 1100 0110 0000 0000 0000

浮点数字节1 浮点数字节2 浮点数字节3 浮点数字节4

S=1: 尾数符号为1表示是负数。

E = 10001000: 指数为 136

$$M = 001\ 1100$$
 0110 0000 0000 0000,尾数为
$$V = (-1)^{1} 2^{\frac{(136 - 127)}{32}} (1 + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{512} + \frac{1}{1024})$$

$$=$$
 -625.5

2.读瞬时流速:

主站发送命令:

01	04	10	12	00	02	D5	0E
设备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收数据:

01	04	04	C1	В0	80	00	A6	5F
设备	功能码	数据		4 个字节	CRC	CRC		
地址		长度		(瞬时	高位	低位		

浮点数为: C1 B0 80 00

1100 0001 1011 0000 1111 1000 0000 0000

S = 1

E = 10000011

 $M = 011\ 0000\ 1111\ 1000\ 0000\ 0000$

$$V = (-1)^{1} 2^{(131 - 127)} (1 + \frac{1}{4} + \frac{1}{8} + \frac{1}{256})$$

- 22.0625

3 读累积流量

为了能够完全表达电磁流量计的 9 位累积值,所以把累积流量的整数和小数部分分别表达。整数部分用长整型变量,小数部分使用浮点数。

累积流量为 1587m3

主站发送采集累积流量整数值命令:

0	1	04	10	18	00	02	F5	0C
设	备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地:	址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收到数据:

01	04	04	00	00	70	71	1E	60
设备	功能码	数据	4 个字节长整形				CRC	CRC
地址		长度	(累积量整数部分)				高位	低位

累积流量的整数部分为 = 28785

主站发送采集累积流量小数值命令

01	04	10	1A	00	02	54	CC
设备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收到数据:

01	04	04	3F	00	00	00	3B	90
设备	功能码	数据	4 个字节浮点数				CRC	CRC
地址		长度	(累积量小数部分)				高位	低位

00

浮点数为: 3F 00 00

 $0011\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

S = 0

E = 01111111 126

 $M = 000\ 0000\ 0000\ 0000\ 0000\ 0000$

$$V = (-1)^{1} 2^{(126 - 127)}$$
$$= 0.5$$

4 读瞬时流量单位

主站发送读瞬时流量单位8个字节命令:

01	04	10	20	00	01	34	C0
设备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收到从站回传7个字节数据:

01	04	02	00	05	79	33
设备	功能码	数据	2 个字	节整型	CRC	CRC
地址		长度	(瞬时流量单位)		高位	低位

根据表 3 查得: 流量单位为 M3/H

5.读总量流量单位

主站发送读瞬时流量单位8个字节命令:

01	04	10	21	00	01	65	00
设备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收到从站回传7个字节数据:

01	04	02	00	01	78	F0
设备	功能码	数据	2 个字	节整型	CRC	CRC
地址		长度	(累积量单位)		髙位	低位

B型及 511 型根据表 4 查得: 流量单位为 M3 C型 根据表 5 查得: 流量单位为 L

6.读报警状态

主站发送读报警8个字节命令:

01	04	10	24	00	01	75	01
设备	功能码	寄存器	寄存器	寄存器	寄存器	CRC	CRC
地址		地址高位	地址高位	长度高位	长度低位	高位	低位

主站接收到从站回传7个字节数据:

01	04	02	00	01	78	F0
设备	功能码	数据	2 个字	节整型	CRC	CRC
地址		长度	(报警)		高位	低位

状态为1表示空管是报警状态。

其他报警依次类推。

七、应用举例

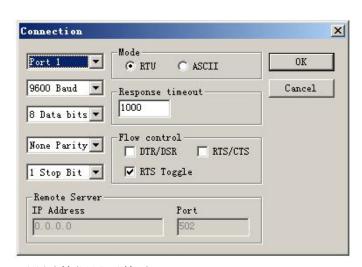
1.C 语言 MODBUS 示例程序

```
(1).CRC16算法:
INT16U CRC16(INT8U *puchMsg, INT16U usDataLen)
  INT8U uchCRCHi = 0xFF;
                                      /* 高CRC字节初始化 */
  INT8U uchCRCLo = 0xFF;
                                     /* 低CRC 字节初始化 */
                                     /* CRC循环中的索引 */
  INT8U uIndex:
  while (usDataLen--)
                                      /* 传输消息缓冲区 */
     uIndex = uchCRCHi ^ *puchMsg++; /* 计算CRC */
     uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex]:
     uchCRCLo = auchCRCLo[uIndex];
  return (uchCRCHi << 8 | uchCRCLo);
}
   (2) 发送命令程序
   本例程以Mag64为核心CPU
   void Read_InPut(INT8U Addr, INT16U Start, INT16U Len)
  INT16U CRC;
                                      //设备地址
  SendBuffer 485[0]=Addr;
  SendBuffer_485[1]=0x04;
                                      //modbus功能码
  SendBuffer_485[2]=Start/256;
                                      //Start为寄存器地址
  SendBuffer 485[3]=Start%256;
                                      //Len为读取寄存器长度
  SendBuffer_485[4]=Len/256;
  SendBuffer_485[5]=Len%256;
  CRC=CRC16 (SendBuffer 485, 6);
  SendBuffer_485[6]=CRC/256;
                                      //CRC校验高位
  SendBuffer_485[7]=CRC%256;
                                      //CRC校验低位
  R485 OUT;
                                      //使能RS485发送
  SendLen 485=8;
  SendNum_485=0;
  CloseINTO();
                                     //关闭串口接受中断
  UCSROB |= BIT(UDRIEO);
                                     //打开串口发送中断
```

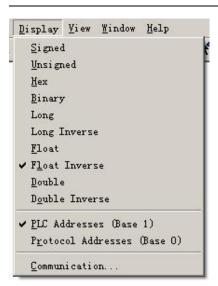
(3) 返回数据解析(只以瞬时流量为例)

数据接收使用串口中断,ReceivedBuffer_485为接收数据组,ReceivedNum_485为接收到数据长度,ReceivedFlag_485接收到数据标志。函数float Datasum(INT8U BYTE1, INT8U BYTE2, INT8U BYTE3, INT8U BYTE4)把浮点数的4个字节转换为1个浮点数。

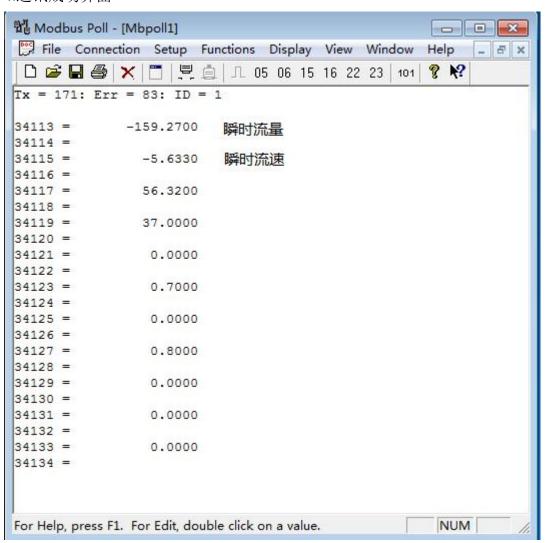
```
float Datasum(INT8U FloatByte1, INT8U FloatByte2, INT8U FloatByte3, INT8U FloatByte4)
float aa;
 union IntTOFP
   {
      FP32
                F32;
      INT8U
                T8[4];
  }:
  union IntTOFP aa;
  aa. T8[0] = FloatByte1;
  aa. T8[1] = FloatByte2;
  aa. T8[2] = FloatByte3;
  aa. T8[3] = FloatByte4;
 return aa;
void Read Lmag(INT8U Ad)
   INT8U i, j;
   INT8U Num1[10], BIT;
   INT16U CRC1, CRC2;
  FP32 Flow;
                                              //aaa为瞬时流量数值
   ReceivedFlag_485=1;
  Open_Time1_Ms5(20);
   Read_InPut (Ad, 0x1010, 2);
                                             //发送设备地址、寄存器地址、寄存器长度
   while (ReceivedFlag 485);
                                             //等待接收结束
   if((ReceivedNum_485==9)&&(ReceivedBuffer_485[0]==Ad))
                                                        // 判断数据是否正确
      CRC1=CRC16 (ReceivedBuffer_485, 7);
      CRC2=ReceivedBuffer_485[7]*256+ReceivedBuffer_485[8];
      if (CRC1==CRC2)
      {// 转换数据为浮点数
      Flow = Datasum(ReceivedBuffer 485[6], ReceivedBuffer 485[5],
                    ReceivedBuffer_485[4] , ReceivedBuffer_485[3]);
      }
      }
}
```


2.modbus 调试软件 modbus poll 通讯实例

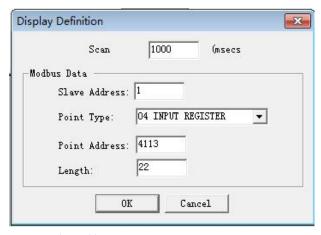
以从站地址为 1,波特率 9600,读取所有实时数据为例设置方法如下:按照表 2 所示:起始寄存器地址 4113 寄存器个数为 22 1.设置采集命令包括设备地址(1)、MODBUS 功能码(04)、寄存器地址(4113)、



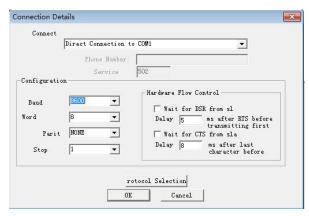
2.设置串口数据


根据 L-mag 电磁流量计串口格式(1 位起始位 8 位数据位 1 位停止位,无校验)设置如下图:

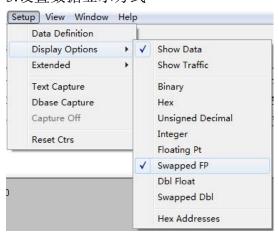
3.设置数据显示格式


4.通讯成功界面

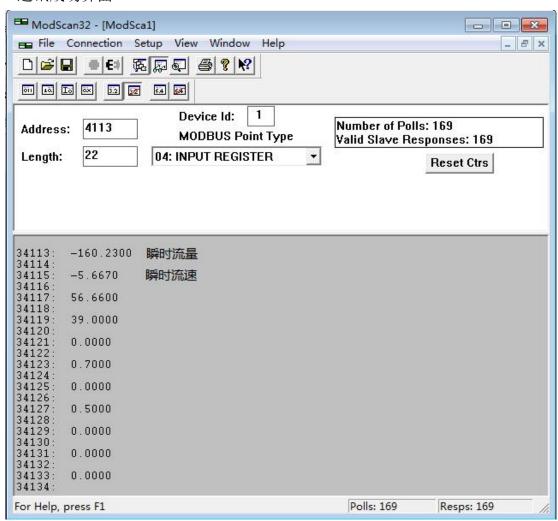
3.modbus 调试软件 modscan32 通讯实例


以从站地址为 1, 波特率 9600,读取所有实时数据为例设置方法如下: 按照表 2 所示: 起始寄存器地址 4113 寄存器个数为 22

1. 设置采集命令包括设备地址(1)、MODBUS 功能码(04)、寄存器地址(4113)、 寄存器长度(2)、采集间隔(1000)。



2.设置串口数据


根据 L-mag 电磁流量计串口格式(1 位起始位 8 位数据位 1 位停止位,无校验)设置如下图:

3.设置数据显示方式

4.通讯成功界面

4.组态王 6.53 通讯实例

第一步:

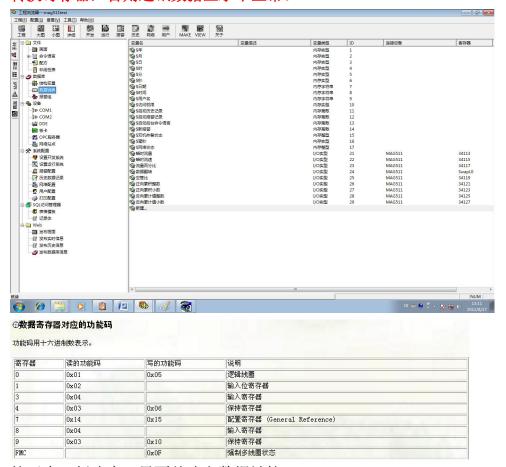
创建组态王工程,点击新建弹出如下界面,输入工程路径及工程名称。

第二步: 打开新建的工程,选择设备栏在 COM 口下新建标准 modbus 设备。组态王设备列表中找到-PLC-莫迪康-modbus(RTU)(L-mag 电磁流量计借助莫迪康 PLCmodbus(RTU)驱动)。

按照电磁流量计中的地址设置设备地址。下图以地址1为例:

第三步:双击设备中的 COM 设置串口参数

L-mag 电磁流量计串口参数: 波特率与电磁流量计中设置相同、1 位起始位、 8 位数据位、 1 位停止位、无校验。下图以波特率 9600 为例:


第四步:点击数据词典添加 L-mag 数据变量 根据组态王驱动说明莫迪康-modbus(RTU)变量名称、寄存器地址和数据格式 见下表:

变量名	寄存器值	数据格式	采用频率	读写属性
瞬时流量	34113	Float	500	只读
瞬时流速	34115	Float	500	只读
流量百分比	34117	Float	500	只读
流体电导比	34119	Float	500	只读
正向累积值整数部分	34121	Long	500	只读
正向累积值小数部分	34123	Float	500	只读
反向累积值整数部分	34125	Long	500	只读
反向累积值小数部分	34127	Float	500	只读
数据转换寄存器	SwapL0	Byte	0	只写

注意: 因电磁流量计数据存储格式的原因,在组态王添加变量时必须添加数据转换寄存器,否则通讯数据显示不正常。

第五步: 创建窗口界面并建立数据链接。

第六步:保存工程并运行工程

瞬时流量	-00116. 42999
瞬时流速	-04. 118
流量百分比	041.17
流体电导比	00009
正向累积值整数部分	0145570342
正向累积值小数部分	0.000
反向累积值整数部分	0488902442
反向累积值小数部分	0.000

5.力控 6.1 通讯实例

说明使用方法


第一步:

创建一个工程输入工程名称及工程路径。



第二步:添加设备

IO 口设备组态选择 IO 设备-modbus-标准 modbus-modbus (RTU 串口)

点击高级选项选择串口并设置串口参数(9600,8为数据位、1位停止位、无校验)


设置数据显示格式

第三步:数据库组态

设置数据格式及地址偏移

数据举例

	WAME [点名]	DESC [说明]	%IOLINK [I/O连接]	%HIS [历史参数]
1	ssll	瞬时流量	PV=mag511:ARF4113	
2	ssls	瞬时流速	PV=mag511:ARF4115	
3	11bfb	流量百分比	PV=mag511:ARF4117	
4	ltddb	流体电导比	PV=mag511:ARF4119	
5	zxljzzsbf	正向累积值整数部分	PV=mag511:ARL4121	
6	zxljzxsbf	正向累积值小数部分	正向累积值小数部分 PV=mag511:ARF4123	
7	fxljzzsbf	反向累积值整数部分	数部分 PV=mag511:ARL4125	
8	fxljzxsbf	反向累积值小数部分	PV=mag511:ARF4127	

第四步:

创建窗口并连接变量

瞬时流量 #######

瞬时流速 ##.###

流量百分比 ###.##

流体电导比 ####

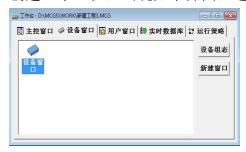
正向流量累积值整数部分 ########

正向流量累积值小数部分 #.###

反向流量累积值整数部分 ########

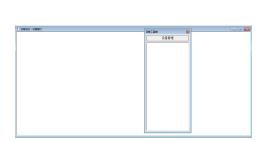
反向流量累积值小数部分 #.###

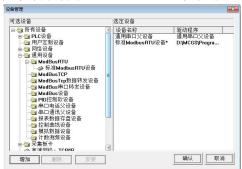
第五步: 运行工程


瞬时流量	-116.51999
瞬时流速	-4.121
流量百分比	41.20
流体电导比	8
正向流量累积值整数部分	145570342
正向流量累积值小数部分	0.000
反向流量累积值整数部分	488903076
反向流量累积值小数部分	0.000

6.MCGS 通讯实例

说明使用方法


第一步:


创建一个工程, 出现如下界面, 选择设备窗口, 双击。

选择设备工具箱,点击设备管理,把通用串口父设备和标准 MODBUSRTU 设备添加到工程。

选择通用串口父设备0属性和设备0属性,进行如下设置。

设备地址为 1,32 位浮点数解码顺序 0-1234, 校验方式 0-LH[低字节, 高字节]。选择设置内部属性。

点击添加通道, 出现如下界面。

寄存器地址	数据类型	通道数量	寄存器定义
4113	32 位浮点数	1	瞬时流量
4115	32 位浮点数	1	瞬时流速
4117	32 位浮点数	1	流量百分比
4119	32 位浮点数	1	流量电导比
4121	32 位无符号二进制	1	正向累积整数
4123	32 位浮点数	1	正向累积小数
4125	32 位无符号二进制	1	反向累积整数
4127	32 位浮点数	1	反向累积小数

选择通道连接

选择设备调试

